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Abstract. The lepton–number violating process νµN → µ−µ+µ+X is studied for the first time in con-
nection with Majorana neutrino masses of the second generation. The sensitivity for light and heavy
Majorana neutrinos is investigated. The ratio with respect to the standard model charged current process
is improved by some orders of magnitude if compared to previously discussed Majorana induced ∆Lµ = 2
processes. Non–observation of this process in previous experiments allows to demand the effective mass to
be 〈mµµ〉 � 104 GeV, being more stringent than previously discussed direct bounds, however still unnat-
urally high. Therefore, in the forseeable future, indirect bounds on effective masses other than 〈mee〉 will
be more stringent.

1 Introduction

Investigation of lepton–number violating processes is one
of the most promising ways of probing physics beyond
the standard model. A particular aspect of this topic is
lepton–number violation in the neutrino sector, which in
the case of massive neutrinos would allow a variety of
new phenomena [1]. This emerges immediately in case of
Majorana masses of the neutrinos, which are predicted
in most GUT–theories [2]. For νe the searches for Ma-
jorana neutrinos mainly rely on neutrinoless double beta
decay(0νββ), resulting in an upper limit on the effective
Majorana mass 〈mee〉 =|∑U2

emmmηCP
m | of about 0.2 eV

[3], where mm are the mass eigenvalues, ηCP
m = ±1 the

relative CP–phases and Uem the mixing matrix elements.
In general, there is a 3 × 3 matrix of effective Majorana
masses, the elements being

〈mαβ〉 = |(U diag(m1η
CP
1 ,m2η

CP
2 ,m3η

CP
3 )UT)αβ |

=
∣∣∣∑mmηCP

m UαmUβm

∣∣∣with α, β = e, µ, τ. (1)

In this paper we explore the possibility to learn about
Majorana masses associated with the second generation.
The process under study is muon lepton–number violat-
ing (∆Lµ = 2) trimuon production in neutrino–nucleon
scattering via charged current reactions (CC)

νµN → µ−µ+µ+X. (2)
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The muonic analogy for the quantity measured in neutri-
noless double beta decay reads 〈mµµ〉 =|∑U2

µmmmηCP
m |

and is investigated for both light and heavy Majorana neu-
trinos. The relevant diagram is shown in Fig. 1, which also
defines the kinematics. Alternative ways discussed in the
literature to obtain direct information about 〈mµµ〉 are
muon capture on nuclei [4] and lepton number violating
K–decays like K− → π+µ−µ− [5–8]. The experimental
knowledge of effective Majorana masses other than the one
measured in 0νββ allows only rather poor limits. The best
values obtained are from muon–positron conversion in sul-
fur (therefore sensitive to 〈mµe〉2) and lepton–number vi-
olating K–decays:

σ(32S + µ− →32 Si∗ + e+)
σ(32S + µ− →32 P∗ + νµ)

< 9 · 10−10

⇒ 〈mµe〉 <
{
0.4 GeV (singlet)
1.9 GeV (triplet)

Γ (K− → π+µ−µ−)
Γ (K− → all)

< 1.5 · 10−4

⇒ 〈mµµ〉 < 1.3 · 105 GeV. (3)

Here the experimental limits are taken from the PDG
[9] and for the mass bounds the theoretical results given
in [10] and [7] are used (all ratios are proportional to
〈mµα〉2). For muon–positron conversion two results are
given, depending on whether the proton pairs in the fi-
nal state are in a spin singlet or triplet state, respectively.
To our knowledge, there are no direct limits on other ele-
ments of 〈mαβ〉. Note that we are considering direct limits,
i. e. measuring processes which are directly dependent on
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Fig. 1. Feynman diagram for the considered process. It is q2 =
q1 − k2 = p1 − k1 − k2. For the crossed diagram k2 and k3 are
exchanged and we denote the corresponding momentum of the
Majorana neutrino with q̃2 = q1 − k3 = p1 − k1 − k3. For the
W momenta holds: q1 = p1 − k1 and q3 = k4 − p2

the respective quantity without making any further as-
sumptions. We will show that using the scattering process
(2) instead of the rare K decay allows to set a limit bet-
ter by one order of magnitude on 〈mµµ〉, which is how-
ever still too high to give a physical mass matrix in (1).
Indirect bounds, e. g. using unitarity of the mixing ma-
trix and oscillation experiments will of course be much
more stringent. Direct production of Majorana neutrinos
heavier than 100GeV has been studied for various collider
types (e−e+, eµ, pp, pp, e−p) [11,12] with typical results
of a few to some hundred events per year for high–energy
and luminosity machines.

2 Model and calculation

Using the diagram shown in Fig. 1 plus its crossed version
we get for the squared invariant amplitude three terms,
each factorizing nicely in three parts. At the upper and
lower vertex we have the standard V–A term. The contri-
bution of the Majorana neutrino, i. e. the partW+W+ →
µ+µ+ is well known from the theory of 0νββ. For the cal-
culation one might follow the strategy in Kayser’s text-
book [13] or use the Feynman rules from [14], we will do
the former. From here on we refer to this part of the dia-
gram as the “0νββ–like” process. We use for particles the
standard Lagrangian

L = − g√
2

∑
m

Uµmµγαγ−UµmνmWα (4)

where γ± = 1
2 (1± γ5). We denote the Majorana neutrino

with νm, the muon with µ and Uµm is an element of the
unitary matrix connecting weak interaction eigenstates
with mass eigenstates. For the 0νββ–like contribution to
the first matrix element we have:

M1 ∝ [νmγργ+U
∗
µmµ

] [
νmγπγ+U

∗
µmµ

]
. (5)

To bring this in a form suitable for inserting the fermion
propagator we use the relation:

νmγργ+µ = −µcγργ−νc
m. (6)

Here µc means the charge conjugated spinor of the muon.
For a given spinor ψ charge conjugation has the properties:

ψc = Cψ
T
, ψc = −ψTC−1

C−1γµC = −γT
µ , C−1γ5C = γT

5 = γ5. (7)

In the standard Dirac notation C = iγ2γ0 is the charge
conjugation matrix. Since νm is a Majorana particle it
has the property νc

m = λ∗
mνm, λm being a phase factor in

the field expansion of νm connected with the intrinsic CP
parity ηCP

m , see e. g. [13]. For the expansion in terms of
spinors and creation/annihilation operators the following
relations are valid:

νm ∝ fu+ λmf+v, µ ∝ fu+ f
+
v,

µc ∝ fu+ f+v, µc ∝ f
+
u+ fv. (8)

Here f annihilates a particle and f
+
creates an antipar-

ticle. Using all the above equations the matrix element
describing the 0νββ–like process can be written as (see
Fig. 1 for the definition of the kinematics)

M1 ∝ λ∗
mU∗ 2

µmµcγργ−νmνmγπγ+µ

= λ∗
mU∗ 2

µm [u(k2)γργ−(q/2 +mm)γπγ+v(k3)]
1

q2
2 − m2

m

= λ∗
mU∗ 2

µmmm [u(k2)γργ−γπv(k3)]
1

q2
2 − m2

m

. (9)

From here on we neglect the massmm in the denominator.
See below for the case when this is no longer allowed. The
above is the matrix element one would have obtained for
an intermediate Dirac neutrino and applying the usual
Feynman rules with one outgoing µ+ written with an u
instead of a v (thus producing a scalar expression) and
one γ+ replaced with a γ−. Assuming CP invariance, the
term λ∗

mU∗ 2
µmmm can be written as (see e. g. [13,15])∣∣∣∣∣

∑
m

λ∗
mU∗ 2

µmmm

∣∣∣∣∣ =
∣∣∣∣∣
∑
m

mmηCP
m U2

µm

∣∣∣∣∣ ≡ 〈mµµ〉, (10)

thus defining the usual effective mass. The matrix element
is therefore proportional to the effective Majorana mass,
just as in 0νββ and the other mentioned lepton–number
violating processes.

For the crossed diagram, described by M2, q2 is re-
placed by q̃2 and k2 by k3. Finally, the interference term
is given by

−M∗
1M2 ∝ v(k3)γνγ+γµu(k2)u(k3)γαγ−γβv(k2) (11)

which has a negative sign due to the interchange of two
identical fermion lines. Using the identities v = −uTC−1

and u = CvT this can be written in a form suitable for
using the completeness relations for the spinors:

v(k3)γνγ+γµu(k2) = −uT (k3)C−1γνγ+γµCvT (k2)

= −uT (k3) (γµγ+γν)
T
vT (k2)

= v(k2)γµγ+γνu(k3). (12)
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Putting all the couplings and propagators together, the
matrix element for scattering with a quark can be written
as (using the Feymann–gauge for the W propagator)

|M|2

= |M1|2 + |M2|2 + 2�
(
M∗

1M2

)

= |〈mµµ〉|264G4
FM

8
W

∣∣∣∣ 1
q2
1 − M2

W

1
q2
3 − M2

W

∣∣∣∣
2

×Tr{γµγ−p/1γ
βγ−(k/1 +mµ)}

×Tr{γνγ−(p/2 +mq)γαγ−(k/4 +mq′)}
×
[∣∣∣∣ 1q2

2

∣∣∣∣
2

Tr{γµγ−γν(k/3 − mµ)γαγ+γβ(k/2 +mµ)}

+
∣∣∣∣ 1q̃2

2

∣∣∣∣
2

Tr{γµγ−γν(k/2 − mµ)γαγ+γβ(k/3 +mµ)}

−2
∣∣∣∣ 1q2

2

1
q̃2
2

∣∣∣∣Tr{γβγ+γα(k/3 +mµ)γµγ−γν(k/2 − mµ)}
]

= |〈mµµ〉|2G4
FM

8
W

∣∣∣∣ 1
q2
1 − M2

W

1
q2
3 − M2

W

∣∣∣∣
2

212(p1 · p2)

×
[∣∣∣∣ 1q2

2

∣∣∣∣
2

(k1 · k2)(k3 · k4) +
∣∣∣∣ 1q̃2

2

∣∣∣∣
2

(k2 · k4)(k1 · k3)

−
∣∣∣∣ 1q2

2

1
q̃2
2

∣∣∣∣ ((k2 · k3)(k1 · k4)− (k2 · k4)(k1 · k3)

−(k1 · k2)(k3 · k4))

]
. (13)

mq and mq′ are the masses of the scattered initial and
final state partons, respectively. Coupling to an antiquark
is identical to replacing k4 with p2. The two short traces
describe the SM V–A vertices, the ones inside the square
brackets are the 0νββ–like process. Averaging over the
parton spin adds an additional factor 1/2. The long traces
were computed with the MATHEMATICA [16] package
TRACER [17]. As can be seen, in the low mass regime
the matrix element is proportional to 〈mµµ〉2. If we take
a heavy Majorana neutrino into account, one has to in-
clude the mass in the propagator for q2 and q̃2, which we
neglected from (9) on. A statistical factor of 1/2 due to
two identical final state muons has to be included in order
to avoid double counting in the phase space integration.

We also performed the calculation for purely right–
handed (RH) currents and obtained the exact same result
with the exchange W → WR. As known, RH currents
must occur — if they exist — strongly suppressed with
respect to the left–handed ones. Since theW momenta are
relatively small in comparison to MW , the cross section is
proportional to

σ ∝ G4
FM

8
W ((q

2
1 −M2

W )(q
2
3 −M2

W ))
−2 ∼ G4

F ∝
(

g2

M2
W

)4

,

(14)

forcing the purely RH case to be some orders of magnitude
under the purely left–handed case, sinceMWR

> 6MW [9].
Here we assumed gL = gR = g.

One could also consider a heavy right–handed Majo-
rana neutrino as suggested by some left–right symmetric
theories [18], where leptons are arranged symmetrically in
left–handed (LH) and RH doublets, i. e.(

νµ

µ−

)
L

and

(
Nµ

µ−

)
R

. (15)

Here Nµ is a heavy Majorana neutrino in a weak leptonic
current of the form

jα
l = µγαγ+Nµ + µγαγ−νµ + . . .+ h. c. (16)

where the dots denote non muonic contributions. We con-
sider it in order to illustrate the general properties of pro-
cess (2) in a model independent way and to stress the
fact that the greatest sensitivity is achieved for a Ma-
jorana mass of 1 to 10GeV, independent of the exact
form of the coupling to the W , see below. Furthermore
it serves as a comparison to the results from [5,6], who
also considered this possibility. In general all possibili-
ties could contribute at the same time. Performing the
same calculation as before we get for the Nµ– case in
(13) a replacement (γ+ ↔ γ−) for the trace describing
the 0νββ–like process which leads in the end to a replace-
ment (k1 ↔ p1, k4 ↔ p2). Again, antiquark scattering is
obtained by replacing k4 with p2 in the quark amplitude.

Also possible is the exchange of other hypothetical par-
ticles such as those from the plethora of SUSY. Anyway, if
process (2) could be detected, general arguments guaran-
tee a Majorana mass term for the muon neutrino, just as
the Schechter and Valle argument [19] does in the case for
neutrinoless double beta decay for the electron neutrino.
In [20] this theorem has been generalized to supersymme-
try demanding also a non–vanishing Majorana mass for
the scalar superpartners of the SM neutrinos. The small-
ness of the cross section however makes a more detailled
analysis in this case not worthwhile: One could in princi-
ple derive limits on the right–handed coupling and/orWR

mass but they would definitely not compete with bounds
derived by other methods, in contrast to the bound we
will derive on 〈mµµ〉 in the next section.

3 Results and discussion

For the evaluation of the total and differential cross sec-
tions we wrote a Monte Carlo program calling the phase
space routine GENBOD [21]. For the parton distributions
we chose GRV 98 (MS) NLO [22] at Q2 = s = (p1+p2)2 =
x2M2

p +2xMpEν , where Mp denotes the proton mass, Eν

the energy of the incoming neutrino and x the Bjørken
variable. We set Q2 = Q2

min whenever Q
2 went under the

minimal allowed value of 0.8GeV2. To get the averaged
neutrino–nucleon cross section we assumed an isoscalar
target and replaced up– and down quarks to get the par-
ton distributions for the neutron.
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Before presenting the results we estimate the ratio with
respect to the total neutrino–nucleon cross section. The
typical suppression factor one encounters when dealing
with Majorana instead of Dirac neutrinos is M/E in the
matrix elements with M being the Majorana’s mass and
E its energy. For the ratio R of the cross sections we have
therefore:

R =
σ(νµN → µ−µ+µ+X)

σ(νµN → µ−X)

∝
(
M

E

)2

G2
FM

4
W ∼

{
10−13 for M = 170 keV
10−5 for M = 5 GeV

, (17)

where we took as a typical value E = 30GeV. For heavy
neutrinos the behavior changes significantly: Instead of
M/E we have now M−2 (see below) and the ratio goes as

R ∝ G2
FM

4
WM2

p

M2 ∼ 10−7 for M = 100 GeV (18)

These ratios will of course be further suppressed by a very
small phase space factor, which rises slightly with energy
and turns out to be about 10−7, as well as by factors
arising from bounds on the mixing with heavy neutrinos,
see below.

As expected, the cross section is tiny: If we use for the
mass of the Majorana neutrino the current limit from the
direct muon neutrino mass search, mνµ = 170 keV [23],
we find that the cross section for energies in the range
5 . . . 500GeV is of the order σ(3µ) � 1 . . . 102 · 10−33b,
being 20 orders of magnitude lower than the total neu-
trino nucleon CC cross section of σCC � 1 . . . 102 · 10−14b
for the same energy range. The Eν dependence of the
cross section can be fitted as a quadratically polynom, i.
e. σ(3µ,Eν) = a ·Eν + b ·E2

ν which has to be compared to
the linear dependence of the total CC neutrino–nucleon
cross section. If we assume that this behavior holds up
to ultrahigh energies (which it does not due to propaga-
tor effects) the cross sections would be roughly equal for
Eν � 1020GeV, far beyond any reasonable scale.

The scaling with 〈mµµ〉2 holds up to masses of about 1
to 10GeV. The RHNµ produces a signal in the same order
of magnitude. We plot the trimuon cross section in Fig. 2
together with the total CC neutrino nucleon cross section
of about 0.7 · 10−14 Eν/GeV b, multiplied with 10−20.

Despite the small values, the ratio of the trimuon pro-
cess described here is significantly more sensitive on 〈mµµ〉
than other discussed processes: Abad et al. [7] get in a
relativistic quark model for the decay K+ → π−µ+µ+ a
branching ratio of 2 · 10−22 while Missimer et al. [4] esti-
mate the ratio of µ−µ+– conversion via capture in 44Ti
with respect to a normal CC reaction to be 4 · 10−25

for a few hundred keV Majorana. Thus the process (2)
is about two orders of magnitude closer to the relevant
standard model process than previously discussed Majo-
rana induced muon–number violating processes.

Considering now the massive case, i. e. including the
Majorana masses in the propagator, the squared ampli-
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tude will now be proportional to the sum

σ ∝
∣∣∣∣∣
∑
m

mmηCP
m U2

µm

(q2
2 − m2

m)

∣∣∣∣∣
2

. (19)

For the sake of simplicity we skip for the moment the fac-
tors ηCP

m U2
µm and consider only one mass eigenvalue, which

turns out to dominate the cross section when it has an ap-
propriate value. First of all, the cross section as a function
of mass will rise quadratically until the propagator takes
over and forces a (mass)−2 behavior. This is displayed
in Fig. 3 where we plot the total cross section for different
neutrino energies. As can be seen the maximal value of the
cross section as a function of mass is obtained in the range
1 . . . 10GeV, rising slightly with Eν . The reason for that
is that the integration over the neutrino propagator has
its maximum in this range. This fact makes the greatest
sensitivity independent of the coupling of the Majoranas
to the leptons orW ’s. One can show that the heavy right–
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Fig. 4. Ratio for process (2) with respect to the total CC νN
cross section for a left–handed νm of (effective) mass 5GeV.
No limit on U2

µm was applied

Table 1. Pure (R) and “Uµm–corrected” (Rcor) ratios of the
process for masses of 7 and 80GeV and different neutrino beam
energies inGeV

mm = 7GeV mm = 80GeV
Eν R Rcor R Rcor

25 1.1 · 10−14 4.4 · 10−24 1.1 · 10−16 4.1 · 10−21

50 6.2 · 10−14 2.5 · 10−23 8.5 · 10−16 3.1 · 10−20

100 3.1 · 10−13 1.2 · 10−22 6.3 · 10−15 2.3 · 10−19

250 2.1 · 10−12 8.4 · 10−22 8.7 · 10−14 3.2 · 10−18

500 7.4 · 10−11 3.0 · 10−20 6.1 · 10−13 2.2 · 10−17

handed Nµ displays the same behavior as the left–handed
Majorana case shown in Fig. 3, which underlines this fact.
In Fig. 4 we display the ratio with respect to the total CC
neutrino–nucleon cross section for a mass of 5GeV as a
function of the incoming neutrino energy. Note that this
light masses are ruled out [9] and that for higher masses
(M >∼ 100GeV) the ratio scales with M−2.

Up to now all the numbers given were for U2
µm = 1.

In this case, a maximum of 7.4 · 10−11 of the CC cross
section would be reached for a Majorana with mass of
about 7GeV. A neutrino beam of 500GeV, coming from
a high energy and luminous µ+µ−– collider with 1013 CC
events per year could in principle produce a few hundred
of such events.

However, there exist already strong constraints on the
matrix elements Uµm from the data. The DELPHI collabo-
ration [24] examined the mode Z → ννm and found a limit
of |Uµm|2 < 2 · 10−5 for masses up to mm � 80GeV. For
larger masses analyses of neutrino–quark scattering and
other processes yield |Uµm|2 < 0.0060 [25]. This pushes
the best sensitivity range about a factor of 10 towards
higher values of mm.

In Table 1 we show the ratios R with and without
taking into account the limits given above for different
energies and for Majorana masses of 7 and 80GeV. As
can be seen one cannot get closer than at most 10−17,
even for a 500GeV neutrino beam. In [12] finite width
effects were found to increase the cross sections for direct

heavy Majorana production significantly. However, these
effects show up for high center–of–mass energies and high
masses so that in our kinematical and mass sensitivity
region these effects should be negligible.

Nevertheless, also in the massive case the improvement
compared to existing numbers is some orders of magni-
tude: Halprin et al. [5] find a (Uµm–corrected) BR smaller
than 3 · 10−27 for K+ → π−µ+µ+ and Σ+ → π−µ+µ+

for a universally coupled 5GeV heavy neutrino and Ng
and Kamal [6] get a (Uµm–corrected) branching ratio of
1.3 ·10−25 for a 2GeV right–handed Majorana coupling to
theW as in (16). This means, for Eν = 100 (500)GeV and
few GeV Majoranas, process (2) is up to 5 (7) orders of
magnitude closer to the standard model CC process than
previously discussed muon–number violating ∆Lµ = 2
processes, which are induced by Majoranas. Interestingly
the highest BR for the mentioned K decay in [5] is also in
the range of 1 to 10GeV.

Though the cross section is probably too small to de-
tect this process in the near future, it still allows to set
bounds on 〈mµµ〉. Let us assume an upper limit on a pro-
cess like (2) of the order 10−5 of the standard CC pro-
cess (otherwise it would have been observed already, see
Sect. 4) and take an energy of Eν = 100GeV. Starting at
small masses, i. e. σ ∝ 〈mµµ〉2, we find 〈mµµ〉<∼ 104GeV.
This has to be compared to 〈mµµ〉< 1.3 · 105GeV as ob-
tained from K–decays [26].

What is now the significance of this 〈mµµ〉 bound?
Obviously, in a three–neutrino framework all elements of
〈mαβ〉 should be roughly in the same order of magnitude,
therefore at most a few eV, not much higher than the limit
for 〈mee〉. In scenarios with additional massive neutrinos
one has to include other processes as restrictions for pos-
sible mass matrix models. The bounds for mixing matrix
elements with heavy neutrinos are typically in the order
of a few 10−3 to 10−2 for νe, νµ and ντ , thus roughly the
same for all three families. It is impossible to reconcile the
bounds for 〈mee〉, 〈meµ〉 and 〈mµµ〉 with these conditions.
If one considers heavy neutrinos and allows 〈mee〉 to be as
high as the other two one can in principle fulfill the other
conditions, but one is lead to contradictions when taking
flavor changing neutral current processes into account, see
the Appendix. It is thus not possible to construct a mass
matrix 〈mαβ〉 spanning 14 orders of magnitude from 〈mee〉
to 〈mµµ〉. Therefore, indirect bounds will be far more ef-
fective than direct ones.

4 Experimental considerations

Several experiments report the observation of trimuon
events [27–29]. The observed ratio of trimuon events (hav-
ing a lepton number conserving (– – +) signature) with
respect to single charged current events is of the order
10−5. First thought to provide evidence for physics be-
yond the SM the explanation was soon given in terms of
CC reactions with dimuon production via meson decay,
radiative processes or direct muon pair production from
subsequent hadronic interactions [30–32]. An acceptance
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cut on muon momenta to be larger than about 5GeV was
applied by all experiments.

To extract a (– + +) signature several background
processes in typical wide band neutrino beams have to be
considered. Among them the most severe are lepton pair
creation due to antineutrino contaminations of the beam
(also having a (– + +) signature) and charm production
with an associated pion or kaon decay as well as overlay-
ing events with beam muons. Furthermore, going to high
momenta some misidentification in the charge might lead
to additional background.

The observables found in the past to be most suitable
for distinguishing the mentioned standard processes from
new physics were the momenta of the muons, their two–
and three–body invariant masses and the azimuthal angle
distribution between the leading muon and the other two.
The leading muon (µ1) was defined as the one which mini-
mizes the sum of the transverse momenta of the remaining
two with respect to the direction of the W, ( /W = /ν−/µ1).
A complete listing of all relevant distributions is not our
aim, however, for the sake of completeness, we plot the dis-
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Fig. 7. Same as above for a mass of 80GeV and incoming
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tributions of the muon momenta, which might be used to
identify the process. From Figs. 5 to 7 it can be seen, that
for the light 〈mµµ〉– case the two µ+ have relatively low en-
ergy, while the µ− from the V–A vertex has a broad spec-
trum with significantly higher energy. This is no longer
valid for a heavy Majorana where the difference of the
muon momenta is less clear, but is becoming larger with
increasing neutrino energy. However, the like–sign muons
have typically the same momentum distributions, which is
an important experimental signature. It is a general fea-
ture that the momentum difference gets bigger when the
energy Eν is significantly higher than the mass of the in-
termediate Majorana. For mass and energy being equal
the distributions are more or less identical.

A similar search to the one described here could also be
done with ν̄µ beams looking for the corresponding process
ν̄µN → µ+µ−µ−X, which though have typically a lower
cross section of one order of magnitude.

5 Summary and conclusion

We investigated the reaction νµN → µ−µ+µ+X at fixed
target experiments mediated by light and heavy Majo-
rana neutrinos. Using the fact, that no excess events were
observed in past experiments at the level of 10−5 with re-
spect to charged current events, we could deduce a limit
of 〈mµµ〉<∼ 104GeV. This is more stringent than other di-
rect results discussed on this quantity, but obviously not
reconcilable with other laboratory experiments.

Some general properties of process (2) were discussed:
The largest sensitivity was found for heavy Majorana neu-
trinos in the region between 1 and 10GeV because of the
fixed target kinematics. This was pushed towards approx-
imately 100GeV due to existing limits on U2

µm. This is
relatively independent of incoming neutrino energy and
independent on the precise form of the couplings, as can
be shown with a right–handed Majorana. In general, pro-
cess (2) is closer to the standard model CC process by 2
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(up to a few 100 keV mass) up to 7 (> 1GeV mass) orders
of magnitude than previously discussed Majorana induced
∆Lµ = 2 processes. We state again that our 104GeV is
the best direct limit, not the best achievable limit.

One could consider various modifications of process (2)
in order to constrain non–standard model parameters con-
nected with the muonic sector. For the case of 0νββ limits
on some Yukawa couplings λ(′)

1jk, describing R–Parity vio-
lating SUSY effects were deduced [33], the bounds being
up to four orders of magnitude more stringent than the
ones obtained from other processes. In addition, for muon
capture in 44Ti, extensions of the standard model were
found [4] to have branching ratios some orders of mag-
nitude higher than the Majorana case, so that it seems
worthwhile to apply them to process (2) as well.

The smallness of the cross section however makes such
a detailled analysis not very worthwhile. This might
change for the case of a neutrino factory from a muon
storage ring with a large number of interactions. Work
about this topic is in progress and will be presented in the
near future.

We concentrated our analysis on neutrino beams, es-
pecially νµ. Since the beam energies are much higher than
the lepton masses, the same arguments as described here
would hold for other fixed–target experiments using
charged lepton beams. However, new background pro-
cesses have to be considered here.

Furthermore, also a lepton–hadron collider such as
HERA, which also has the advantage of higher

√
s can be

used. The same strategy that lead to the bound on 〈mµµ〉
can of course be applied to infer quantities as 〈mµτ 〉 or
〈mττ 〉, for which no direct limits whatsoever exist. Tak-
ing the appropriate channels, no SM processes faking the
signal exist. This has in the meantime been discussed in
detail in [34].

Acknowledgements. This work has been supported in part (M.
F. and W. R.) by the “Bundesministerium für Bildung, Wis-
senschaft, Forschung und Technologie, Bonn under contract
number 05HT9PEA5. A scholarship (W. R.) of the Gradu-
ate College “Erzeugung und Zerfälle von Elementarteilchen”
at Dortmund university is gratefully acknowledged.

A Appendix

The task is to construct a mass matrix with 〈mee〉 � 0,
〈meµ〉 � 2GeV and 〈mµµ〉 � 104GeV. For the matrix
elements for mixing with heavy neutrinos holds [25]∑

|UeH |2 < 6.6 · 10−3 and
∑

|UµH |2 < 6.0 · 10−3. (20)

First, let us assume that U2
eH � 0 and U2

µH = 6 · 10−3.
Then we find that mH = 1.7 · 106GeV, leading to UeH �
1.6 ·10−5 which in turn leads to a contribution to 〈mee〉 of
4.1 ·105 eV, in contradiction to our assumption. In general
we found no solution for the allowed parameters.

Conversely, we might want to use the fact that there is
a bound on heavy (mH > 1GeV) contributions from the

Heidelberg–Moscow experiment of [35]

∑
U2

eHi

1
mHi

< 5 · 10−5TeV−1. (21)

Ignoring the condition 〈mee〉 � 0 allows to find param-
eters capable of obeying the 〈meµ〉 and 〈mµµ〉 limits as
well as Eqs. (20) and (21). For example, U2

eH1
= U2

eH2
=

10−10, U2
eH3

= 4 · 10−13 and U2
µH1

= 5 · 10−3, U2
µH2

=
−5 · 10−4, U2

eH3
= 10−5 with mH1 = 100GeV, mH2 =

1TeV and mH3 = 10
6 TeV.

Then again we have FCNC processes like µ → eγ,
which are sensitive on meµ =

√∑
UµiUeim2

i . The experi-
mental value of the branching ratio, BR < 1.2 · 10−11 [36]
and the theoretical value from [18] gives meµ < 1.23GeV,
which is not fulfilled by the choice given.
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